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Abstract. A modification of the second law is required for a system with a bounded density of
states and not the introduction of a ‘negative’ temperature scale. The ascending and descending
branches of the entropy versus energy curve describe particle and hole states, having thermal
equations of state that are given by the Fermi and logistic distributions, respectively. Conservation
of energy requires isentropic states to be isothermal. The effect of adiabatically reversing the field
is entirely mechanical because the only difference between the two states is their energies. The
laws of large and small numbers, leading to the normal and Poisson approximations, characterize
statistically the states of infinite and zero temperatures, respectively. Since the heat capacity also
vanishes in the state of maximum disorder, the third law can be generalized in systems with a
bounded density of states: the entropy tends to a constant as the temperature tends to either zero
or infinity.

1. Introduction

‘Negative’ temperatures are supposed to occur in peculiar systems which exist in a state of
incomplete equilibrium for a finite period of time [17, 19]. These systems are considered to
violate the general proof that the temperature is positive [7]. In conventional thermodynamic
systems the total energy is the sum of the internal energy,Ē, and the kinetic energies of its
internal constituents. And since the system is isolated, the total energy is constant. The entropy,
S, is a function of the internal energy, which is the difference between the total energy and the
kinetic energies of the internal constituents. Now, if the inverse temperature,

β =
(
∂S

∂Ē

)
Y

(1)

which is measured in energy units where Boltzmann’s constant is unity, andY stands for a set
of extensive variables held constant during the variation, could be negative then an increase
in the entropy for a diminishing value of the internal energy would mean that the internal
energy is converted into molecular kinetic energy. Since the end result would be spontaneous
break-up of the system, systems with negative temperatures could not exist in a quiescent state
of thermal equilibrium.

Suppose that the kinetic energy of molecular motion could be replaced by some sort
of potential energy. Paramagnetic substances can be thought of as a collection of nuclear
spins embedded in a crystalline lattice. Due to the separation in relaxation times, over which
the nuclear spins interact and the spin–lattice interactions take place, one can consider the
nuclear spins to be thermally isolated from the lattice for a finite period of time [17, 19]. At
zero magnetic field, the spins point in all directions and the state is said to be completely
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disordered. By applying a magnetic field, the spins tend to follow the field leading to a state
of greater order; the spins which are furthest out of line with the field will possess the greatest
energy. On reversing the field so quickly that the spins have no time to readjust and follow
the field, the system will be brought into a nonequilibrium state which has a higher energy
than the state prior to the reversal of the field. On the timescale of the spin–spin interactions
we may expect that the spin system alone will achieve a state of metastable thermodynamic
equilibrium with a uniform temperature. Removing the field adiabatically will have no effect
upon the spin system over the shorter timescale, and over this timescale the spin system is said
to manifest ‘negative’ temperatures. Only over the order of the longer timescale, where the
spins can exchange energy with the lattice, will heat pass from the spin system at a ‘negative’
temperature and higher energy to the lattice with a positive temperature and lower energy in
order that the combined spin–lattice system achieves a true state of thermodynamic equilibrium
at a uniform, positive temperature.

Other systems that supposedly manifest ‘negative’ temperatures include laser oscillations
in an inverted, amplifying medium [27], communication, information theory and language
statistics [13], two-dimensional vortex fluids [14, 16], and a guiding-centre plasma [6]. Prior
to the reversal of the field in paramagnetic materials, the higher the energy the less likely is
it for the state to be populated. Upon reversal of the field, the decaying Boltzmann factor
has become an exponentially increasing one, corresponding to what is formally a ‘negative’
temperature, so that the higher the energy the greater the probability of finding a state occupied
by the system. It is for this reason that it is said that a state of ‘negative’ temperature is hotter
than a state of positive temperature [20].

In the absence of the kinetic energy of the internal motions, the densities of states may not
be unbounded so that negative temperatures do not necessarily imply the lack of convergence
of thermodynamic quantities like the generating function. In the case where there are only
a finite number of energy levels, themselves finite, the densities of states will, in fact, be
bounded from above [7, p 213]. However, a bounded density of states poses problems in
statistical mechanics because of the presence of a state of maximum entropy at a finite energy;
consequently, the entropy is not a monotonically increasing function of the internal energy.
The entropy versus energy curve will have the bell-shaped form shown in figure 1. States of
‘negative’ temperatures are associated with states lying along the descending branch of the
entropy curve. Since the derivative (1) is no longer positive over the entire range of energies
there is no longer an equivalence between the entropy maximum principle and the minimum
energy principle [2].

The maximumX on the entropy curve in figure 1 corresponds to the state of maximum
disorder, and has zero inverse temperature. The inverse temperature acts like an ‘order’
parameter: the state of complete disorder would require an enormous change in the internal
energy to cause even a minute change in the entropy. As the system becomes more ordered, the
order parameter,β, increases. If we consider a set of spins in a magnetic field, a sudden reversal
of the field is sufficient to cause the system to jump from a state of positive temperature,P , to
a state of ‘negative’ temperature,Q, at the same value of the entropy, as shown in figure 1 [3].
The stateQ is said to be hotter than the stateP because the spins which had the least energy in
stateP now have the greatest energy inQ and vice versa. Because they follow a Boltzmann
distribution in stateP , more states of lower energy are populated than of higher energy so that
the population inversion in stateQ really makes it quite hot [25]. One is presupposing that a
state of higher energy means that it is hotter.

A single experiment is no longer sufficient to determine whether the entropy will decrease
or increase with the internal energy. The lack of monotonicity of the entropy is disturbing
from a thermodynamic point of view. Since the dividing line is the state of maximum disorder
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Figure 1. Entropy as a function of the internal energy for Fermi–Dirac statistics. The bending over
of the entropy curve is a hallmark of systems with a bound density of states. The entropy vanishes
at 0 whereT = 0 and in the state of maximum energyrε where againT = 0. The maximum
state of disorderX corresponds to an infinite temperature. The ascending part of the curve from
0 toX corresponds to the usual Fermi statistics, while the descending curve has the same thermal
equation of state except that−T appears in placeT , but withT > 0. The statesP andQ lie along
an isothermal and isoentropic line.

at infinite temperature, how can the temperature increase beyondT = ∞? Because the state
of maximum disorder atT = ∞ is thermodynamically indistinguishable with the state at
T = −∞ [7, p 213]. Along the descending branch of the entropy curve, the temperature is
increasing until it reaches the state of greatest energy atT = −0. Hence, it was advocated
that two infinite ranges of temperatures are required [18].

The crux of the matter is whether magnetic energy can be considered as a form of heat
energy. Since potential energy is not the heat that can be felt, it raises doubts as to whether it
can be substituted for the uncontrollable energy buried in the kinetic energy of the molecules.
Electric and magnetic fields can be added to the list of independent variables,Y ; they are,
however, only ‘pseudo-thermodynamic’ quantities since no conservation law applies to them
[24]. The inverse temperature (1) would then be defined at constant field leaving the internal
energy to vary independently of the field. Indeed, the kinetic energy of molecular motion
is not on par with magnetic energy; it does not appear in the setY , and it is coupled to
variations in the internal energy through energy conservation. Work processes involving
pseudo-thermodynamic variables cannot be thought of the exchange of conserved quantities,
so a decrease in the internal energy resulting in an increase in the entropy does not necessarily
mean an increase in the magnetic field.

In the case of paramagnetic materials, variations in an applied magnetic field that are so
quick as to leave the entropy of the magnetic system unchanged can cause variations in the
temperature. An increase in the field produces an immediate increase in the temperature while
decreases in the field produce corresponding decreases in the temperature [2, p 255]. Under
adiabatic conditions, the change in the temperature dT due to a change in the applied field dH
is given by

dT =
(
∂T

∂H

)
S

dH. (2)
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By continually decreasing the field, quasi-statically and adiabatically, extremely low
temperatures can be reached. However, this necessarily implies that the entropy is an
independent variable so that we are working in the energy representation. Recalling that the
condition for transforming from the entropy to the energy representation is that (1) be positive,
the above argumentation will not be valid for ‘negative’ temperatures since (1) will be negative
over a finite range of energies. Any physical model which is used to investigate ‘negative’
temperatures must reflect the fact that the two definitions of heat capacity,T (∂S/∂T )Y and
(∂Ē/∂T )Y , will not coincide when (1) is negative.

The aim of this paper is to show that ‘negative’ temperatures do not exist. Rather, the
second law must be changed to

−β =
(
∂S

∂Ē

)
Y

< 0 (3)

along the descending part of the entropy curve so that the temperature will still be positive.
Specifically, we return to Ramsey’s model for ‘negative’ temperatures in section 2. In section 3,
we compare the conventional Young inequality, that utilizes equations of state of the form (3),
with its thermodynamic counterpart that employs hyperbolic equations of state (1). Since
(3) applies along the descending branch of the energy curve, a thermodynamic ‘symmetry
breaking’ will occur between the maximum entropy and minimum entropy representations.
This will be discussed in section 4. In section 5, comparison will be made between the
thermal distribution found for states lying along the descending branch of the entropy curve
and positrons in relativistic hole theory. We present our conclusions in section 6.

2. A question of zero-point energy

In this section we return to the model used by Ramsey [20] to discuss ‘negative’ temperatures
and show that different definitions of the conjugate variables of energy and inverse temperature
result simply by choosing different zero-point energies.

In his discussion of ‘negative’ temperatures, Ramsey [20] considered a set ofη equally
spaced energy levelsε. Instead of following Ramsey by selecting the zero of energy midway
between, we make allowance for different zero-point energy values. The single particle
generating function is

Z1(β; η) =
j=η∑
j=0

e−(j+α)βε = e−(η−1+2α)βε/2 sinh(ηβε/2)

sinh(βε/2)
(4)

where the parameterα is related to a ‘zero-point’ energy. Ramsey studied a four level system.
Actually, only two cases need be considered:η = 2 andη = ∞, corresponding to Fermi–
Dirac and Bose–Einstein statistics, respectively [8]. It is only in these two cases that the
inverse temperature as a function of the energy can be expressed in closed form using, in the
former case, the double-angle formula of hyperbolic sine. Since we want a system with a
finite number of energy levels, we will deal here with the caseη = 2. The logarithm of the
generating function for a population of sizer is

lnZr(β) = r{ln[2 cosh( 1
2βε)] − 1

2(1 + 2α)βε}. (5)

We now turn our attention to expressions for the average energy that are obtained by
varying the value of the zero-point energy. Forα = 0 we obtain

∂

∂β
lnZr = 1

2E0(tanh( 1
2βε)− 1) (6)
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whereE0 = rε is the greatest attainable value of the energy. In order to achieve thermal
equilibrium, we have to adopt the thermodynamic convention of defining the average energy
as

Ēp = − ∂

∂β
lnZr. (7)

We then obtain the Fermi distribution,

Ēp = 1
2E0(1− tanh( 1

2βε)) =
E0

eβε + 1
= n̄pε (8)

wheren̄p is the average ‘particle’ occupation number. However, this is not the only possible
choice of the parameter,α.

Forα = −1 there results
∂

∂β
lnZr = 1

2E0(tanh( 1
2βε) + 1). (9)

Now, in order to achieve a thermal equilibrium distribution we must define the average energy
as:

Ēh = ∂

∂β
lnZr. (10)

In doing so, we find that the thermal distribution is the logistic distribution:

Ēh = 1
2E0(1 + tanh( 1

2βε)) =
E0

1 + e−βε
= n̄hε (11)

wheren̄h is the average ‘hole’ occupation number. An analogy with semiconductor physics
will help bring out the distinction between ‘particles’ and ‘holes’.

In semiconductor physics, the Fermi distribution represents the thermal distribution
of electrons, while the logistic distribution describes hole statistics [22]. For intrinsic
semiconductors, the statistics of holes in the valence band matches that of electrons in the
conduction band except for three notable differences. A decrease in the electron energy will
cause an increase in the energy of the hole, particles and holes have opposite charges, and there
is a maximum energy cut-off to the thermal hole distribution. Hole theory was also introduced
by Dirac in his interpretation of negative energy states of the relativistic wave equation [5] (cf
section 5)†.

Therefore, the phenomenon we are analysing is much more general than the reversal
of a magnetic field in a spin system. It applies to all systems that obey Fermi statistics. The
exclusion principle, which is the basis of the Fermi distribution, implicitly implies the presence
of an energy gap separating particles from their antiparticles, electron from holes, and so on.
The transitions between the two can be radiative, electronic, or magnetic. As a consequence
of the energy gap, we should expect a threshold energy which is achieved by pumping in
lasing materials where the rate of absorption is balanced by the rate of stimulated emission,
the transition between thermal radiation and non-thermal radiation that is characteristic of
luminescent materials [26], the energy separating the transition between the clustering of
vortices of opposite sign and vortices of the same sign [14], and the energy of the state
of maximum disorder in a paramagnetic material. The behaviour of the particles and their
complements is mutually exclusive: an increase in energy of one implies a decrease in energy
of the other, as will now be shown. We will continue to refer to paramagnetic materials, while
realizing that the phenomenon is more widespread.

† What we will refer to as ‘holes’ can also be called antiparticles with positive energy, or antifermions [28]. The
difference between antiparticles and particles, apart from their charge, is that their thermal distributions are given by
(11) and (8), respectively.
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If the energyĒp of (8) corresponds to stateP on the entropy curve in figure 1, then̄Eh of
(11) is the energy of stateQ lying on the adiabat joining them. Their sum is the statement of
energy conservation:

Ēp(β) + Ēh(β) = E0. (12)

Since the occupation numbers are the independent variables in quantum statistics [9], (12)
necessarily coincides with the conservation of the number of particles and holes:

n̄p(β) + n̄h(β) = r. (13)

It is just that the inverse temperature is defined differently in the two cases. Expression (13) is
a statement of mutual exclusivity: the probability,n̄h/r, of an electron not occupying a state
at energyε, is one minus the probability that it is,(1− n̄p/r). Energy, or particle and hole,
conservation implies that the temperature of statesP andQ are the same. States with the
same temperature have the same degree of disorder. So the two statesP andQmust have the
same entropy, which is what we originally used to connect the two states. The sole physical
difference between the two states is that their energies are different; the difference being due
to an applied external field.

According to the thermodynamic convention of defining the energy, (7), the Legendre
conjugate of− lnZr(β) is

S(Ē) = lnZr(β)− β ∂
∂β

lnZr(β) = lnZr(β) + βĒ. (14)

In the next section, we will appreciate that this definition ensures the existence of the canonical
distribution in the case of an unbounded density of states (cf equation (25) below). Definition
(10), in contrast, gives the dual to− lnZr(β) as

S(Ē) = lnZr(β)− βĒ. (15)

Consequently, whereas (14) uses the conventional form of the second law, (1), (15) employs
the modified form given by (3). In the next section, we show that this definition of the inverse
temperature is valid over a range of energy values in systems possessing a bounded density of
states (cf equation (29) below).

Solving (8) and (11) for their inverse functions result in

β = ±1

ε
ln

(
E0 − Ē
Ē

)
(16)

respectively. Ifβ is to be positive, thenĒ < E0/2 when the plus sign is chosen, while
Ē > E0/2 when the negative sign is selected. These correspond to the ascending and
descending branches of the entropy curve, respectively. For no matter what sign is chosen
in (16) their respective definitions, (1) or (3) in terms of the entropy derivative, both give

S(Ē) = const.− (r − Ē/ε) ln(r − Ē/ε)− (Ē/ε) ln(Ē/ε) (17)

upon integration. The constant of integration is determined by comparing (17) with the
logarithm of the binomial coefficient in the case where the numbersr and Ē/ε are large
enough to warrant Stirling’s approximation for their factorials. This determines the constant
to be r ln r. Expression (17) has the form of an entropy of ‘mixing’, having the shape an
inverted parabola in figure 1 with a maximum energyE0 = rε.

Unlike the entropy and temperature, which have uniquely defined zeros, only differences
in the internal energy are measurable. Thus, for the same entropy (17) and temperature (16) we
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can have different expressions for the energy. Although these differ by an integral zero-point
energy, the particle entropy:

S = r{ln[2 cosh( 1
2βε)] − 1

2βε tanh( 1
2βε)}

= r ln(1 + e−βε) + 1
2βE0[1− tanh( 1

2βε)]

= lnZr(β(Ēp)) + β(Ēp)Ēp
and the hole entropy:

S = r{ln[2 cosh( 1
2βε)] − 1

2βε tanh( 1
2βε)}

= r ln(1 + eβε)− 1
2βE0[1 + tanh( 1

2βε)]

= lnZr(β(Ēh))− β(Ēh)Ēh
are the same. The average energiesĒp andĒh are given by (8) and (11), respectively.

The intermediate case whereα = − 1
2 shifts the entropy curve by an amountE0/2 to the

left on the energy axis. The state of maximum disorder now corresponds toĒ = 0. States
lying on the ascending part of the entropy curve have negative energies, while those lying
along the descending part have positive energies. In other words, the energy can be positive
or negative whereas the temperature must always be positive. The derivative of the logarithm
of the generating function,

lnZr = r ln[2 cosh( 1
2βε)]

gives the inverse functions

β = ±1

ε
ln

(
E0 + 2Ē

E0 − 2Ē

)
(18)

depending on whether (10) or (7) is used, respectively. Since hole states correspond to energies
Ē > 0, while particle states to energiesĒ < 0, where|Ē| 6 E0/2, hole states lie above those
of particle states. In both semiconductor physics and relativistic hole theory, in contrast, hole
states lie below those of particles states, and in the latter theory hole states have negative
energies. As we have seen, there is nothing less physical about negative energies than positive
ones since it all depends on selecting the zero point energy. Only energy differences count,
but they should be such that the temperature (18) always remains positive semi-definite.

Integration of either relation in (18), according to the definition of the second law as (3)
or (1), coincides in the unique expression

S = r ln r − 1
2(r + 2Ē/ε) ln[ 1

2(r + 2Ē/ε)] − 1
2(r − 2Ē/ε) ln[ 1

2(r − 2Ē/ε)] (19)

for the entropy, where the constant of integration has been set equal tor ln(r/2). The entropy
(19) is that of a one-dimensional symmetric random walk, wherer represents the total number
of jumps and 2̄E/ε is the excess number of positive jumps. The number of ways of getting
2Ē/ε excess positive jumps from a total ofr jumps is

(
r

1
2 (r+2Ē/ε)

)
†. This model has been used as

a combinatorial definition of the entropy reduction [10]; the reduction in entropy as measured
from the state of maximum disorder with the greatest entropy. In the limit|Ē| � E0/2, the
entropy (19) reduces to the characteristic quadratic form:

S(n)− r ln 2= − 1
2 ln( 1

2πr)− 2n2/r (20)

where we have setn = E/ε, and whose average value isn̄ = Ē/ε. For equala priori
probabilities of positive and negative jumps, the probability distribution,

P(n) =
(

r
1
2(r + 2n)

)(
1

2

)r
= exp(S(n)− S0) =

√
2

πr
e−2n2/r (21)

† If 1
2(r + 2Ē/ε) is not an integer, the binomial coefficient is interpreted as zero.
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tends to the normal distribution in the limiting case of larger. In other words, the quadratic
approximation of the entropy reduction, (20), determines the normal form of the probability
distributionexactlywhen Stirling’s formula,x! ∼ √2πxxxe−x is used for the factorials. The
negative of the logarithm of thea priori probability,( 1

2)
r , is the maximum entropy,S0 = r ln 2,

and the entropy reductionS(n) − S0 determines the probability distribution according to the
generalized form of Boltzmann’s principle for extreme value distributions [10]. It is essential
to bear in mind that an arbitrary constant does not enter into the expression relating the entropy
to the probability distribution, which is not the ‘thermodynamic’ probability, which is an
extremely large number, but, rather, a normalized probability distribution. The absolute value
of the constant is related to a generalization of the third law, which will be discussed in section 4.

3. The thermodynamic Young inequality

A geometrical inequality known as Young’s inequality deals with the sums of the integrals
of inverse functions which correspond to thermodynamic conjugate variables, like energy and
inverse temperature. This will allow us to obtain inequalities on the sum of the Legendre duals,
the entropy and the logarithm of the generating function. Furthermore, Young’s inequality and
its thermodynamic generalization will permit us to discriminate between the two forms of the
second law, (1) and (3), in terms of the type of exponential probability distributions that they
give rise to.

A generalization of Young’s theorem states [15] that iff (x) is a continuous andincreasing
function on the interval containing the pointsx = 0 andx = a (wherea > 0 or a < 0) such
that f (0) = 0 andf (x) → ∞ asx → ∞, then its inversef −1 exists and has the same
properties asf . If b belongs to the domain off −1 then the inequality holds

ab 6
∫ a

0
f (x) dx +

∫ b

0
f −1(y) dy

with equality iff b = f (a). Young’s inequality can be given a simple geometric proof which
can be found in any text on convex analysis.

As it stands, Young’s inequality, or its generalization, cannot be applied to
thermodynamics. Equations of state relating conjugate thermodynamic variables are
hyperbolic so that they fail to satisfy the conditionf (0) = 0. Fortunately, this condition
can be relaxed so that we may considerf on an interval containing the pointsx = c and
x = q. Young’s generalized inequality is [15, p 243]

qs − cf (c) 6
∫ q

c

f (x) dx +
∫ s

f (c)

f −1(y) dy (22)

provideds belongs to the domain off −1, and the equality holds iffs = f (q).
In conventional thermodynamics, there is the additional problem that the thermodynamic

state function,f , is a strictlydecreasingfunction of its conjugate variable. Only in the case
of a bounded density of states canf be an increasing function over a limited range of values
of its conjugate variable. In that case, Young’s inequality is given in its usual form

γE − β(Ē)Ē 6
∫ E

Ē

β(x) dx +
∫ γ

β(Ē)

β−1(y) dy (23)

with equality whenγ = β(E). A graphic interpretation of inequality (23) is given in figure 2(a).
In the case of an unbounded density of statesf is continuous and decreasing so that the
inequality in (23) has to be reversed, as shown graphically in figure 2(b).

The reverse of inequality (23) is applicable to all thermodynamic systems with an
unbounded density of states, eS(E). The reason is that a rapidly increasing density of states
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Figure 2. (a) A graphical interpretation of the generalized Young inequality for a bounded density
of states. (b) A graphical interpretation of the generalized Young inequality, with the inequality
reversed, for an unbounded density of states.

must be overpowered by an even more rapidly decreasing exponential factor, e−γE with γ > 0,
in order to yield a finite integral,Zr(γ ) =

∫∞
0 e−γEeS(E) dE. This can be demonstrated by

rewriting inequality (23) as [12]

γE − β(Ē)Ē >
∫ Ē

E

∂S

∂x
dx +

∫ β(Ē)

γ

∂

∂y
lnZr dy

= S(E)− S(Ē) + lnZr(β(Ē))− lnZr(γ ). (24)

Since lnZr(β(Ē)) andS(Ē) are connected by the Legendre transform, (14), inequality (24)
reduces toS(E)− lnZr(γ ) 6 γE, or equivalently to

Pp(E; γ ) = eS(E)
e−γE

Zr(γ )
6 1 (25)

where the equality holds whenγ = β(Ē). This is the physical content contained in the reverse
of inequality (23), and (25) is none other than the canonical distribution, which belongs to the
exponential family of distributions, parameterized byγ which is an estimate of the inverse
temperature [9, chapter 4]. The average energy is the most probable value of the energy, and
this overwhelmingly maximizes the probability distribution (25).
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As an illustration of the thermodynamic Young inequality, (24), consider the inverse of
the particle energy (7),

β = 2

ε
tanh−1

(
1− 2Ēp

E0

)
(26)

on the interval [0, E0/2]. Expression (26) is clearly adecreasingfunction of its argument, and
inequality (24) reads

γE − β(Ēp)Ēp > 1

ε

∫ E

Ēp

ln

(
E0 − x
x

)
dx − 1

2
E0

∫ β(Ēp)

γ

(
1− tanh

(
1

2
εy

))
dy

= S(E)− S(Ēp) + lnZr(β(Ēp))− lnZr(γ ).

On the strength of the Legendre transform (14), the inequality reduces to (25).
However, the density of states,

(
r

n

)
, is bounded and, consequently, we cannot consider

all values of the energy on the positive half axis, but only those up to the maximum energy,
E0 = rε. According to Newton’s binomial theorem, the generating function is

Zr(γ ) =
r∑
n=0

e−γ εn
(
r

n

)
= (1 + e−γ ε)r (27)

so it would seem that it really makes no difference whetherγ is positive or negative.
Nevertheless, we have to limit the interval to [0, E0/2] in order to apply the thermodynamic
Young inequality (24). Over this interval, the density of states is an increasing function of the
average energy, (26) is positive, and ifγ is to be a consistent estimate ofβ, it too has to be
positive.

As an illustration of the conventional form of Young’s inequality, (23), consider the inverse
of the hole energy (10),

β = 2

ε
tanh−1

(
2Ēh
E0
− 1

)
(28)

on the interval [E0/2, E0]. Since (28) is anincreasingfunction the conventional Young
inequality (23) reads

γE − β(Ēh)Ēh 6
∫ E

Ēh

ln

(
x

E0 − x
)

dx − 1

2
E0

∫ β(Ēh)

γ

(
1 + tanh

(
1

2
εy

))
dy

= − S(E) + S(Ēh)− lnZr(β(Ēh)) + lnZr(γ ).

The inequality is graphically shown in figure 2(a). The Legendre transform (15) reduces the
inequality to

Ph(E; γ ) = eS(E)
eγE

Zr(γ )
6 1. (29)

What fixes the sign of the parameter in (29) is that on the half-interval [E0/2, E0], the
entropy, and consequently the density of states, is a decreasing function of the average energy,
while the logarithm of the generating function is a monotonically increasing function of its
argument. Consequently, any estimate of the true value of the inverse temperature (28) must
itself be positive. The logarithm of the generating function,

Zr(γ ) =
r∑
n=0

eγ εn
(
r

n

)
= (1 + eγ ε)r (30)

differs from the logarithm of (27) by a positive, constant termγE0. In both cases, (25) and (29),
the entropy can be determined to within a constant, and it is given by (17). Either definition
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(1) or (3) of the inverse temperature can be used in (17).Whereas the entropy is continuous
over the entire range of energy values, two thermal equations of state are required, one for
particles and the other for holes.

The canonical distributions, (25) and (29), both correspond to binomial distributions. The
distinction between the two lies in the expressions for thea priori probabilities,p andq, where
p + q = 1, and not in the binomial coefficient. This is what leaves the entropy (17) invariant.
Casting (25) as a binomial distribution,

Pp(E; γ ) = eS(E)
e−γE

Zr(γ )
=
(
r

E/ε

)
pE/εqr−E/ε (31)

identifiesq = (1 + e−γ ε)−1 andp = (1 + eγ ε)−1. In contrast, for (29) we obtain

Ph(E; γ ) = eS(E)
eγE

Zr(γ )
=
(
r

E/ε

)
pE/εqr−E/ε (32)

showing that thea priori probabilities have been interchanged:q = (1 + eγ ε)−1 and
p = (1+e−γ ε)−1. Although the two binomial distributions have the same entropy, the fact that
thea priori probabilities have been interchanged means that two thermal equations of state are
required which are mirror images of one another upon temperature reversal, just like the pair
of a priori probabilities.

In the case of a symmetrical random walk, where the energy (jump) can be positive or
negative, the probability distribution is

P(E; γ ) = eS(E)
e±γE

Zr(γ )
=
(

r
1
2(r + 2E/ε)

)
p

1
2 (r+2E/ε)q

1
2 (r−2E/ε)

where the± refer to the positive and negative energy states on the falling and rising parts of
the entropy curve, respectively. Although thea priori probabilities are the same as before,
depending on the choice of the sign in the exponent, the entropy has changed and is now given
by (19). According to Pascal’s triangle, the maximum value coincides with the middle term,
corresponding to the statēE = 0. It is further maximized with equala priori probabilities,
p = q = 1

2. Maximum probability and maximum entropy coincide in the state of infinite
temperature since this is the most disordered state. According to the central limit theorem,
the distribution of particles + holes population will surely tend to the normal distribution as
the population sizer increases without limit. In the next section this will be contrasted with
the case where thea priori probabilities tend to zero while the population,r, again increases
without limit. This will be seen to be the case of infinitely small temperatures which fall
under another limit theorem: the law of small numbers. We will therefore conclude that if the
population is allowed to grow without limit, the extremes in the temperature lead to different
different limit laws: the law of large numbers in the limit asT → ∞, and the law of small
numbers in the limit asT → 0. Both limits will be equipped with their own statements of the
third law.

4. Thermodynamic symmetry-breaking

Since(∂S/∂Ē)Y is negative over a limited range of values of the energy, the internal energy
and entropy representations are no longer equivalent in the sense that the maximum entropy
principle implies the minimum energy principle [2]. In fact, when(∂S/∂Ē)Y is not positive
one of the two expressions for the heat capacityT (∂S/∂T )Y or (∂Ē/∂T )Y becomes negative,
thus violating a fundamental thermodynamic stability criterion. Athermodynamic symmetry-
breakingis said to have occurred [10, pp 83–93].
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Higher energies do not necessarily imply higher temperatures and larger entropies. It is
incorrect to identify the potential energy resulting from the application of a magnetic field
as a form of heat energy [3]. Long ago, when it was in vogue to attempt a derivation of the
second law from the mechanical principle of least action, it was recognized that two types
of coordinates were necessary to specify a thermodynamic system: ‘controllable’ coordinates
‘which fix the geometrical, strain, electric and magnetic configuration of the system,’and
‘unconstrainable’ coordinates which fix ‘the separate moving parts of the systems whose
kinetic energy constitutes the temperature of the body’ [23]. No control can be exerted over
latter coordinates individually.

We have already mentioned how an adiabatic reversal of the magnetic field supposedly
enables one to jump from a state of positive temperatureP into state a state of negative
temperatureQ along the adiabatic connecting both sates in figure 1 [3]. If the effect of the
magnetic field were to increase the temperature, we would expect stateQ to be more disordered
than stateP , simply because it is hotter. But, the disorder of the two states is exactly the same
because the line connecting them is an adiabat. And as a result of energy conservation for
any pair of states connected by the adiabat, (12), the temperatures of the two states will be
the same. Otherwise, the total energy would not be independent of the temperature. What is
different in the statesP andQ is their values of the internal energy, so that the external field
has a purely mechanical effect upon the system. Clearly then, the magnetic energy, or for that
matter any potential energy, cannot be considered as a form of heat energy.

Introducing either of the thermal equations of state (8) or (11) into the fundamental relation
(17) gives

S(β) = r
{

ln(1 + e−βε)
1 + e−βε

+
ln(1 + eβε)

1 + eβε

}
. (33)

Since the entropy is invariant underβ reversal,β →−β, the temperature of the two statesP
andQ will be the same, although they will have an energy difference of

1Ē = Ēh − Ēp = E0 tanh( 1
2βε).

In the limit asβ → ∞, the energy gap becomes1Ē → E0, while, in the opposite limit as
β → 0, the energy gap vanishes.

Taking the derivative of (33) with respect to the temperature gives

CY := T
(
∂S

∂T

)
Y

= r( 1
2βε)

2sech2( 1
2βε) (34)

as the expression for the heat capacity. In the limit1Ē/E0 � 1, the heat capacity (34) is
approximated by

CY ≈ r
(
1Ē

E0

)2
[

1−
(
1Ē

E0

)2
]
.

This has the form of a Schottky heat capacity, whose anomalous peak is due to the presence
of an intrinsic gap width. Both expressions (33) and (34) are symmetrical inβ, and therefore
cannot distinguish whether Êthe temperature is positive or negative. If the two states are
indistinguishable with respect to the sign ofβ, how can ‘negative’ temperatures be hotter than
positive ones? In other words, if we place two systems with the same entropy,P andQ in
figure 1, in thermal contact, heat will not flow from the ‘hotter’ stateQ to the ‘colder’ state
P because they are at the same temperature. According to the second law, if the two systems
are placed in thermal contact which are at the same temperature, there will be no increase in
entropy. If two identical systems have the same entropy and energy, they must necessarily be
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at the same temperature. But, in open systems the energy of the two systems can be different
while possessing the same values of the entropy and temperature.

The expression for the heat capacity (34) is valid for both increasing and decreasing parts
of the entropy curve. The heat capacity displays a peak at aroundβε ≈ 1 and tends to zero
for β = 0 andβ = ∞. According to either of the thermal equation of states, (8) or (11),Ē

tends to half maximum,E0/2 asβ → 0. On the one hand, in the stateβ = 0 the temperature
is so high and the entropy is at its maximum so that it will be practically independent of the
temperature. Consequently, the heat capacity vanishes. On the other hand, atβ = ∞, both
the entropy and the particle energy (8) vanish, while the hole energy (11) reaches its largest
value,E0 with the entropy returning to zero†. Therefore, the heat capacity vanishes both in
the states of lowest and highest energies.

This constitutes the most important generalization of the third law for systems with a
bounded density of states:the heat capacity tends to zero at infinite temperature as well as
at zero temperature. In other words, there is a saturation effect in which the entropy tends to
its maximum value,r ln 2, independent of the temperature. The evolution of the entropy as a
function of temperature is shown in figure 3(a). The fact that the entropy tends to a constant
both at zero and infinite temperatures is responsible for the anomalous peak in the heat capacity
which is shown in figure 3(b). Although the zero temperature limit is the conventional statement
of the third law, the infinite temperature limit can be used as a generalized statement of the third
law for a constrained system, like the one under investigation, that has a bounded density of
states [11]. In other words, no arbitrary constant of integration enters the entropy expression:
absolute and not relative differences in the entropy can be measured from the state of maximum,
as well as the state of minimum, disorder. Consequently, no arbitrary constant of integration
will appear in the generalized Boltzmann principle (21): the entropy reduction determines the
entire probability distribution, and not just a part of it as in Boltzmann’s original formulation
for systems with an unbounded density of states.

The distinction between the two states of absolute zero, at lowest,Ē = 0, and highest,
Ē = E0, energies, can be made in by introducing the fugacity,z := eµ/T , whereµ is the
chemical potential. The average occupation number for particle states is

n̄p = r

e(ε−µ)/T + 1
. (35)

It tends tor asT → 0 for all those values of the energy,ε < µ, while for energiesε > µ

the occupation number tends to zero. The chemical potential at absolute zero is the limiting
energy of the particles, and it is necessarily positive. All particle states with energies up toµ

are completely filled while all single-particle states with energiesε > µ are empty.
Alternatively, the average occupation number for holes is

n̄h = r

1 + e−(ε−µ)/T
(36)

in the presence of a finite value of the chemical potential. AsT → 0, the logistic distribution
(36) tends to zero for allε < µ, and tor for ε > µ. Consequently, we get the inverse step
function, indicating that all single-hole states up to the Fermi energy,µ, are completely empty,
while all single-hole states with energies greater than the Fermi energy are filled. In order to
bring the system into its highest quantum state at absolute zero, it is necessary to fill all hole
states with particles below the Fermi energy.

The Fermi sphere now comprises the ‘cavity,’ and the holes occupy an annular region
from the Fermi energy up to the maximum,E0, that is characteristic of the metal. This is
the system’s highest quantum state, which is reached atT = 0, where there is a complete

† This statement has to be qualified when a finite chemical potential is introduced, as we do in (35) and (36) below.
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Figure 3. (a) The entropy as a function of temperature. (b) The heat capacity curve with an
anomalous peak.

segregation between particles and holes. The entropy vanishes atT = 0, for ĒP = 0 and
Ēh = E0, in the caseε > µ, and forĒP = E0 and Ēh = 0 in the opposite case where
ε < µ. This is analogous to the clustering of parallel vortices of the same sign in unsteady
two-dimensional flow. Higher energy states can be achieved by segregating the vortices into
clusters of like kind. Onsager [14] reasoned that since these states are of greater order, and
consequently lower entropy, they must manifest a ‘negative’ temperature because they require
greater energy. However, the segregation of like particles also occurs at minimum energy
because it takes energy to create a particle excitation outside of the Fermi sphere leaving a
hole behind. Consequently, the case of complete segregation of particles and holes occurs at
the greatest and smallest energies.

In the limit asT → 0, thea priori probability p → 0 for particle energiesε > µ.
Furthermore, ifr is allowed to increase without limit we witness the binomial distribution (31)
transforming into the Poisson distribution,

Pp(n) = n̄n

n!
e−n̄

for the probability that there aren = E/ε particles, whose average value isn̄ = rp, in
energy statesε > µ. A Poisson distribution for holes is also obtained in the same limit
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for the probability of occupying energy statesε < µ. Only for large values of̄n can the
Poisson distribution be approximated by the normal distribution, so that at extremely low
temperatures, wherep tends to zero, thermal excitations above the Fermi energy by particles,
or hole excitations below the Fermi energy, cannot be approximated by a normal distribution.
Therefore, thermal excitations at low temperatures follow the classical law of rare events, in
contrast to fluctuations about the state of maximum entropy which follow the normal error law
(21).

The total particle energy is obtained by integrating the particle distribution,n̄p =
r/(eε/T +1), over all energiesε, where, for simplicity, we again suppress the chemical potential.
We then obtain

Ep = r
∫ ∞

0

dε

eε/T + 1
= −rT ln(1 + e−ε/T )|∞0 = rT ln 2.

The energyT ln 2 represents the minimum energy necessary to transmit one bit of information
[1]†. For a temperature of 300 K, this corresponds to a frequency of 4.3×1012 Hz lying at the
lower end of the far-infrared. If we want to use frequencies larger than this we must consider
the hole energies.

Integrating the hole distribution,n̄h = r/(1+e−ε/T ), over all energies results in a divergent
integral. Consequently, we must introduce a maximum cut-off,εmax, just as in the Debye
model of a crystalline solid at low temperatures. Analogously, in semiconductors,εmax would
correspond to the valence band edge. The physical origin of the cut-off is that only in systems
with a finite number of degrees of freedom can the entropy decrease as the internal energy
increases over a finite range of values. The total energy is

Eh = r
∫ εmax

0

dε

e−ε/T + 1
= rT [ln(1 + eεmax/T )− ln 2].

For energiesεmax� T , this reduces toE = rεmax, independent of the temperature. The hole
energy is therefore much larger than the particle energy. The characteristic largest frequency
for particles isT ln 2/h̄, whereas for holes, it isεmax/h̄, with εmax � T ln 2. The quantity
T ln 2 constitutes the lower limit for detecting a quantum of energy above the limit of thermal
noise [1]. This corresponds to the largest entropy per particle, ln 2, in the state of maximum
disorder.

5. Comparison with relativistic hole theory

The relativistic wave equation admits solutions for which the energy (and not the temperature)
is negative. These negative energy states have caused a great deal of concern in quantum
mechanics because an applied field can cause transitions from a state of positive energy to
a state of negative energy. Once the electron reaches a negative energy state it can continue
to lower its energy by emitting photons without limit. In order to avoid the conclusion that
positive energy electrons can jump into negative energy states, Dirac assumed that all negative
energy states, comprising energies between−mc2 to −∞, are filled. Moreover, they do not
contribute to the charge of the system because the charge is uniformly distributed [5]. High
energy, rapidly varying electromagnetic fields enable an electron to jump into a positive energy
state leaving a hole, or a negative energy positive electron, behind. The energy gap separating
positive and negative energy states is 2mc2, and this rest energy can be given up in the form of
light when an electron–positron pair annihilate each other which can be pictured as an electron
jumping into a hole representing the positive electron.

† This is deduced from the equality e−ε/T = 1−e−ε/T = 1
2 of the probabilities of finding an energy levelε occupied

and vacant.
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Although this is the conventional formulation of relativistic hole theory, it is not the fact that
the energy is negative but, rather, that there aretwovalues of the energy which are admissible
for each ‘particle’. Even in the nonrelativistic theory of intrinsic semiconductors there are two
energy states, one in the valence and the other in the conduction band, which are connected by
an electronic transition. When an electron has been raised to the conduction band, a hole has
been left behind in the valence band having all the properties of an electron except that it has
positive charge. The energy gap of 2mc2 corresponds to the intrinsic energy gap separating
the two bands.

The problem with the formulation of relativistic hole theory is the association of the
negative energy hole with the positive energy positron. The occupation number for the
positive energy positrons is converted into the occupation number of negative energy holes
by changing the sign of the energy. We will argue that it is only the latter distribution that is
thermodynamically admissible.

The thermal equilibrium distributions for positive energy electrons and positive energy
positrons are [4]

n̄(e−) = z ∂
∂z

ln(1 + ze−εp/T ) = r

z−1eεp/T + 1
(37)

and

n̄(e+) = −z ∂
∂z

ln(1 + z−1e−(2mc
2+εh)/T ) = r

ze(2mc2+εh)/T + 1
(38)

respectively, whereεp and 2mc2 + εh are the energies of the states of an electron and positron.
The generating functions in (37) and (38) do not differ by an integral zero point, as do (6) and
(9). Expression (38) represents the occupation number of positive energy positrons, which by
reversing the sign of the energy is converted into the logistic distribution (36) for holes. As it
stands, (38) would have the mean occupation numberdecreasingwith the chemical potential,
rather than increasing with it. It would thus violate a fundamental thermodynamic stability
criterion.

The same criticism could be lodged against the logistic distribution (36). Yet, it must be
remembered that hole states lie along the descending part of the entropy curve, and for quantum
statistics it is the occupation number that is the independent variable and not the energy, which
is related linearly to it,Ē = n̄ε. For quantum statistics, the modified version of the second
law, (3), corresponds to

dS

dn̄
=
(
∂S

∂n̄

)
Ē

+

(
∂S

∂Ē

)
n̄

dĒ

dn̄
= µ− ε

T
. (39)

Clearly, it is the distribution of holes (36) which satisfies (39) and not the distribution of positive
energy positrons, (38). Put slightly differently, it is the number of electrons and holes at any
given energy which is conserved, since their distributions are complementary to each other.
Without number conservation we would be at a loss to interpret the chemical potential,µ.

According to the conventional formalism, the basic interaction in electrodynamics is such
that thedifferencebetween the number of positive energy electrons, (37), and the number of
positive energy positrons, (38), be conserved [4]:

n̄(e−)− n̄(e+) = const. (40)

It is this condition that supposedly determines the fugacity [4]. In the hole theoretic
interpretation, one equatesn̄(e−) = n̄p(e−ε>0), while [21]

n̄h(e
−
ε<0) = −n̄(e+) + constant background (41)
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which are given by (35) and (36), respectively. The ‘background’ is the state in which all
negative kinetic energy levels are filled. The second definition is tantamount to reversing
the sign of the positive energy electrons in (38) so that it would coincide with the logistic
distribution (36). Since it is the difference between the number of electrons and positrons
that is conserved, (40), a negative sign is needed in (41) to get the conservation of the sum of
particles and holes (13). The condition on the chemical potential that was implied by (40) has
disappeared because the sum of the particle and hole distributions is an identity. Consequently,
the two conservation conditions, (13) and (40), are not equivalent.

Moreover, the lack of symmetry between (37) and (38) enables the average number of
positrons to vanish in the limit asT → 0, while the vanishing or nonvanishing of (37) depends
upon the sign of the differenceεp − µ in the same limit. Consequently, when we take the
T → 0 limit in (41), n̄(e+) vanishes, whereas the occupation number of holes vanishes for
energies less thanµ, while it tends tor for energies greater thanµ. Hence, the ‘constant
background’ is less than constant. This leads us to the conclusion that the logistic distribution
for positive energy holes (36) is the physically meaningful thermal distribution and not the
thermal distribution of positive energy positrons, (38).

6. Conclusions

The aim of this paper has been to show that there is no need, or reason, to introduce a
negative temperature scale. ‘Negative’ temperatures can be replaced by positive ones simply
by modifying the second law (1) to read (3) for states lying on the descending branch of the
entropy curve in systems with a bounded density of states.

We chose Ramsey’s model [20] of ‘negative’ temperatures, but made allowance for
different zero-point energies. Different choices of the zero-point energy gave rise to different
definitions of the expected energy in terms of the derivative of the logarithm of the generating
function. Since the logarithm of the generating function and the entropy are duals in the sense
of the Legendre transform, a change in definition of the expected value of the energy, in terms
of the derivative of the logarithm of the generating function, causes a corresponding change
in the definition of the inverse temperature in terms the derivative of the entropy. It is the
modification of the second law along the descending part of the entropy curve, (3), which is
required and not two temperature scales both having infinite ranges [18].

Systems that differ by an integral zero-point energy have the same entropy but have
different thermal equations of state. The resulting equations of state, (8) and (11), or,
equivalently, the expected number of elements and their complements as a function of
temperature, show a behaviour akin to particles and holes in semiconductors, or particles and
antiparticles in relativistic quantum theory. The only difference is that hole states lie above
particle states energetically, while hole states in semiconductors and antiparticle states in the
Dirac sea lie below those of particles. Therefore, for communication purposes, hole states are
to be preferred. The thermal distribution for particles for states lying on the ascending branch
of the entropy curve is the Fermi distribution, (8), while the thermal distribution for holes on
the descending branch obey the logistic distribution, (11). The sum of the two distributions is
constant guaranteeing both the conservation of energy, (12), and the total number of particles
and holes, (13).

Since the entropy and the logarithm of the generating function are Legendre duals, their
derivatives are inverses of one another. One would naturally think of their satisfying Young’s
inequality were it not for the condition that the equation of state for the inverse temperature is
hyperbolic and hence does not vanish at the origin as required by the usual form of Young’s
inequality. Therefore, it was necessary to generalize Young’s inequality to include the case
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where the thermodynamic state function is a strictlydecreasingfunction of its argument. This is
the usual thermodynamic situation which is covered by the conventional form of the second law
(1). Exponentiating both sides of the thermodynamic Young inequality leads to a probability
distribution (25), belonging to the exponential family of distributions. The prior distribution,
or the density of states, is unbounded from above and thus requires an exponentially decreasing
function of the energy to cut off the power growth of the density of states, thereby ensuring
the existence of its integral over all energies. The coefficient of the energy in the exponential
is the inverse temperature, which necessarily must be positive.

Yet, in the case under discussion the density of states is bounded. Consequently, the
unconventional thermodynamic Young inequality can only apply to the ascending branch
of the entropy curve. Along the descending part of the curve the conventional form of
Young’s inequality applies since the inverse temperature is a strictlyincreasingfunction of the
energy. The density of states now decreases as an inverse power of the energy, and although
Young’s inequality again yields a distribution belonging to the exponential family, (29), the
coefficient in the exponentially increasing factor is positive since the generating function is
now a monotonically increasing function of the inverse temperature. Hence, we concluded
that a modification of the second law is required along the descending branch of the entropy
curve rather than a new temperature scale. Moreover, we appreciated that whereas two thermal
equations of state are required, the entropy (19) is unique and insensitive to whether the inverse
temperature is defined according to its usual definition (1) or its negative (3).

The two distributions belonging to the exponential family can be cast as two binomial
distributions. The binomial coefficient, whose logarithm is the entropy, is the same in both
cases. But what changes are the expressions for thea priori probabilities: they reflect the same
mirror symmetry under temperature reversal that the two thermal equations of state, (8) and
(11), manifest. This provides additional support for the need of a modification of the second
law for hole states. Moreover, we found that the state of maximum disorder has equala priori
probabilities leading to the coincidence of maximum probability with maximum entropy. As
the population,r, is allowed to increase without limit, the probability distribution tends to the
normal distribution, (21), because thea priori probabilities,p andq, are equal. The error of the
normal approximation will be small ifrpq � 1. Alternatively, if the total population is large
while the probability of success,p, is small such that their productrp = n̄ is small, but finite,
another limit law applies: the law of small numbers leading to the Poisson approximation.
Whereas the normal approximation applies to the state of infinite temperature and maximum
disorder, the Poisson approximation applies to the states of zero temperature at lowest and
highest energies.

States along the descending branch of the entropy curve are characterized by a
thermodynamic symmetry breaking in which the equivalence between the maximum entropy
and minimum energy representations is destroyed. In the region where (3) holds, it is evident
that bothT (∂S/∂T )Y and(∂Ē/∂T )Y cannot both yield positive definite expressions for the
heat capacity. And since this is a necessary condition for thermodynamic stability, only one of
the two representations will survive. The fact that the thermal distribution of holes is governed
by the logistic distribution (36) implies that(∂Ē/∂T )Y will be negative along the descending
branch of the entropy curve. Furthermore, since the heat capacity vanishes at the extremes in
the temperature, there will be a statement of the third law both a zero and infinite temperatures.

The adiabat which intersects the bell-shaped entropy curve connects two states whose
entropies are not only equal but also their heat capacities are equal. When either (1) or (3) is
used to eliminate the energy in the expression for the entropy, (19), the same expression for the
entropy as a function of temperature results, (33). Both the entropy (33), and heat capacity (34),
are even functions of the inverse temperature and cannot distinguish between plus and minus
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temperatures. The conservation of energy (12), or, equivalently, the conservation of particles
and holes, (13), at any temperature requires the temperatures of the two states connected by the
adiabat to be one and the same. Furthermore, both states possess the same degree of disorder
because they have the same entropy. But what are different are the energies of the two states
and the different definitions used to define their temperature. Since the field affects only the
internal energy, we are treating a purely mechanical effect, and this can happen only in open
thermodynamic systems.
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